Subsections

Partial structure factors

There are a few, somewhat different definitions of partials S(q) used in practice, and computed by I.S.A.A.C.S.

Faber-Ziman definition/formalism

One way used to define the partial structure factors has been proposed by Faber and Ziman [11]. In this approach the structure factor is represented by the correlations between the different chemical species. To describe the correlation between the α and the β chemical species the partial structure factor SFZαβ(q) is defined by:

SFZαβ(q)  =  1  +  4πρ$\displaystyle \int_{{0}}^{{\infty}}$ dr r2 $\displaystyle {\frac{{\sin qr}}{{qr}}}$ $\displaystyle \left(\vphantom{g_{\alpha \beta}(r) - 1}\right.$gαβ(r) - 1$\displaystyle \left.\vphantom{g_{\alpha \beta}(r) - 1}\right)$ (5.15)

where the gαβ(r) are the partial radial distribution functions [Eq. 5.4].
The total structure factor is then obtained by the relation:

S(q)  =  $\displaystyle \sum_{{\alpha,\beta}}^{}$ cαbα cβbβ $\displaystyle \left[\vphantom{S^{FZ}_{\alpha \beta}(q) - 1}\right.$SFZαβ(q)  -  1$\displaystyle \left.\vphantom{S^{FZ}_{\alpha \beta}(q) - 1}\right]$ (5.16)

Ashcroft-Langreth definition/formalism

In a similar approach, based on the correlation between the chemical species, and developped by Ashcroft et Langreth [12,13,14], the partial structure factors SALαβ(q) are defined by:

SALαβ(q)  =  δαβ  +  4πρ$\displaystyle \left(\vphantom{{c_\alpha c_\beta}}\right.$cαcβ$\displaystyle \left.\vphantom{{c_\alpha c_\beta}}\right)^{{1/2}}_{}$ $\displaystyle \int_{{0}}^{{\infty}}$ dr r2 $\displaystyle {\frac{{\sin qr}}{{qr}}}$ $\displaystyle \left(\vphantom{g_{\alpha \beta}(r) - 1}\right.$gαβ(r) - 1$\displaystyle \left.\vphantom{g_{\alpha \beta}(r) - 1}\right)$ (5.17)

where δαβ is the Kronecker delta, cα = $\displaystyle {\frac{{N_\alpha}}{{N}}}$, and the gαβ(r) are the partial radial distribution functions [Eq. 5.4].
Then the total structure factor can be calculated using:

S(q)  =  $\displaystyle {\frac{{\displaystyle{\sum_{\alpha, \beta}} b_\alpha b_\beta \l...
...ha \beta}(q) + 1\right]}}{{\displaystyle\sum_{\alpha} c_\alpha b_\alpha^2}}}$ (5.18)

Bhatia-Thornton definition/formalism

In this approach, used in the case of binary systems ABx [15] only, the total structure factor S(q) can be express as the weighted sum of 3 partial structure factors:

S(q) = $\displaystyle {\frac{{\langle b \rangle^2 S_{NN}(q) + 2\langle b \rangle(b_\tex...
...- (c_\text{A} b_\text{A}^2 + c_\text{B} b_\text{B}^2)}}{{\langle b \rangle^2}}}$  +  1 (5.19)

where b〉 = cAbA + cBbB, with cA and bA reprensenting respectively the concentration and the scattering length of species A.
SNN(q), SNC(q) and SCC(q) represent combinaisons of the partial structure factors calculated using the Faber-Ziman formalism and weighted using the concentrations of the 2 chemical species:

SNN(q) = $\displaystyle \sum_{{\text{A}=1}}^{{2}}$$\displaystyle \sum_{{\text{B}=1}}^{{2}}$cAcBSFZAB(q) (5.20)

SNC(q) = cAcB×$\displaystyle \left[\vphantom{ c_\text{A}\times\left(S^{FZ}_{\text{A}\text{A}}...
...t(S^{FZ}_{\text{B}\text{B}}(q) - S^{FZ}_{\text{A} \text{B}}(q)\right) }\right.$ cA×$\displaystyle \left(\vphantom{S^{FZ}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A} \text{B}}(q)}\right.$SFZAA(q) - SFZAB(q)$\displaystyle \left.\vphantom{S^{FZ}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A} \text{B}}(q)}\right)$  -  cB×$\displaystyle \left(\vphantom{S^{FZ}_{\text{B}\text{B}}(q) - S^{FZ}_{\text{A} \text{B}}(q)}\right.$SFZBB(q) - SFZAB(q)$\displaystyle \left.\vphantom{S^{FZ}_{\text{B}\text{B}}(q) - S^{FZ}_{\text{A} \text{B}}(q)}\right)$ $\displaystyle \left.\vphantom{ c_\text{A}\times\left(S^{FZ}_{\text{A}\text{A}}...
...t(S^{FZ}_{\text{B}\text{B}}(q) - S^{FZ}_{\text{A} \text{B}}(q)\right) }\right]$ (5.21)

SCC(q) = cAcB×$\displaystyle \left[\vphantom{ 1 + c_{\text{A}} c_{\text{B}} \times \left[ \sum...
...Z}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A}\text{B}}(q) \right)\right] }\right.$1 + cAcB×$\displaystyle \left[\vphantom{ \sum_{\text{A}=1}^{2} \sum_{\text{B}\ne\text{A}}...
...ft( S^{FZ}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A}\text{B}}(q) \right)}\right.$$\displaystyle \sum_{{\text{A}=1}}^{{2}}$$\displaystyle \sum_{{\text{B}\ne\text{A}}}^{{2}}$$\displaystyle \left(\vphantom{S^{FZ}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A} \text{B}}(q)}\right.$SFZAA(q) - SFZAB(q)$\displaystyle \left.\vphantom{S^{FZ}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A} \text{B}}(q)}\right)$$\displaystyle \left.\vphantom{ \sum_{\text{A}=1}^{2} \sum_{\text{B}\ne\text{A}}...
...ft( S^{FZ}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A}\text{B}}(q) \right)}\right]$$\displaystyle \left.\vphantom{ 1 + c_{\text{A}} c_{\text{B}} \times \left[ \sum...
...Z}_{\text{A}\text{A}}(q) - S^{FZ}_{\text{A}\text{B}}(q) \right)\right] }\right]$ (5.22)


SNN(q) is the Number-Number partial structure factor.
Its Fourier transform allows to obtain a global description of the structure of the solid, ie. of the repartition of the experimental scattering centers, or atomic nuclei, positions. The nature of the chemical species spread in the scattering centers is not considered. Furthermore if bA = bB then SNN(q) = S(q).
SCC(q) is the Concentration-Concentration partial structure factor.
Its Fourier transform allows to obtain an idea of the distribution of the chemical species over the scattering centers described using the SNN(q). Therefore the SCC(q) describes the chemical order in the material. In the case of an ideal binary mixture of 2 chemical species A and B5.2, SCC(q) is constant and equal to cAcB. In the case of an ordered chemical mixture (chemical species with distinct diameters, and with heteropolar and homopolar chemical bonds) it is possible to link the variations of the SCC(q) to the product of the concentrations of the 2 chemical species of the mixture:
SNC(q) is the Number-Concentration partial structure factor.
Its Fourier transform allows to obtain a correlation between the scattering centers and their occupation by a given chemical species. The more the chemical species related partial structure factors are different ( SAA(q)≠SBB(q)) and the more the oscillations are important in the SNC(q). In the case of an ideal mixture SNC(q) = 0, and all the information about the structure of the system is given by the SNN(q).
If we consider the binary mixture as an ionic mixture then it is possible to calculate the Charge-Charge SZZ(q) and the Number-Charge SNZ(q) partial structure factors using the Concentration-Concentration SCC(q) and the Number-Concentration SNC(q):

SZZ(q) = $\displaystyle {\frac{{S_{CC}(q)}}{{c_A c_B}}}$        and        SNZ(q) = $\displaystyle {\frac{{S_{NC}(q)}}{{c_B/Z_A}}}$ (5.23)

cA et ZA represent the concentration and the charge of the chemical species A, the global neutrality of the system must be respected therefore cAZA + cBZB = 0.

Figure [Fig. 5.6] illustrates, and allows to compare, the partial structure factors of glassy GeS2 at 300 K calculated in the different formalisms Faber-Ziman [11], Ashcroft-Langreth [12,13,14], and Bhatia-Thornton [15].


Figure 5.6: Partial structure factors of glassy GeS2 at 300 K. A Faber-Ziman [11], B Ashcroft-Langreth [12,13,14] et C Bhatia-Thornton [15].
Image allsqp



I.S.A.A.C.S. can compute the following partial structure factors:
Faber-Ziman SFZαβ(q)
Ashcroft-Langreth SALαβ(q)
Bhatia-Thornton SNN(q), SNC(q), SCC(q) and SZZ(q)

Sébastien Le Roux 2011-02-26